

日本フォトニクス協議会2013年3月定例会 2012年度 第4回 光材料・応用技術研究会

レーザーによる表面改質 レーザーピーニング

2013年3月1日

株式会社 東芝 電力・社会システム技術開発センター

佐野 雄二

東芝グループは、持続可能な 地球の未来に貢献します。

© 2013 Toshiba Corporation

発表内容

レーザーピーニングの概要

ピーニングとは?

金属の表面を叩いて押し延ばすことにより、表面に くっ付け合う力(圧縮残留応力)を与える技術 ~ 刀鍛冶の仕事に似ている ~

ショットピーニング

鉄の球(ショット)で強化 http://icsp9.iitt.com/

www.nchm.jp/contents02_gyoji /02_kikaku_200405_top.html

レーザーピーニング

光の弾(レーザー)で強化

施工した表面が伸びて材料が 曲がるため、表面に発生する 圧縮残留応力(くっ付け合う力) は小さい 表面が伸びても材料が厚くて 曲がらないため、表面に大きな 圧縮残留応力(くっ付け合う力) が発生する

光の弾をどうやって作るか

水でプラズマを閉じ込める

6

レーザーピーニング処理の概要

レーザーピーニング処理

残留応力の改善効果

ショットピーニングとの比較

ショットピーニング レーザーピーニング

http://icsp9.iitt.com

ショットピーニング レーキ	デー	ピー	ニング
---------------	----	----	-----

駆動力	ショットの衝突 (運動エネルギー)	レーザー照射により 発生する高圧プラズマ
エネルギー	≤ 0.001J/shot	0.1J/pulse
効果	<mark>浅い</mark> (≤ 0.2mm)	深い(約1mm)
プロセス	統計的(ランダム)	決定的(再現性が高い)
効果の予測	経験的	シミュレーションも可能
処理速度	速い	遅い

原子炉構造物の 応力腐食割れ(SCC)対策

応力腐食割れの抑制(SUS304)

応力腐食割れの進展抑制(SUS304)

モックアップ試験

BWR原子炉底部への適用

BWR原子炉底部への適用

BWR原子炉底部への適用

施工装置の組合せ試験

PWR原子炉底部への適用

PWR原子炉底部への適用

低圧蒸気タービン動翼への適用

低圧蒸気タービン動翼への適用(ピン孔内面)

蒸気タービン動翼ピン孔内面へ レーザーピーニングを適用

http://www.tepco.co.jp/cc/press/betu08_j/images/080919b.pdf

(2010年より適用開始)

http://www.tepco.co.jp/cc/press/betu08_j/images/080919b.pdf

原子力用低圧蒸気タービン動翼

実翼材料のレーザーピーニング試験結果

材料および施工条件

・材料: 12Cr系ステンレス鍛鋼
・パルスエネルギー: 70mJ
・照射スポット径: 0.7mmφ
・照射出力密度: 23MW/mm²
・照射密度: 27 or 45パルス/mm²

外観および金属組織

低圧蒸気タービン動翼ピン孔への適用

橋梁、航空宇宙などへの応用

溶接部の疲労寿命の延長(SM490)

レーザーピーニング処理材 未処理材 250 04 レーザーピーニング 処理範囲 (20mm × 30mm) 50 厚さ 12mm

SM490片側リブ溶接試験体の疲労試験(大阪大学接合科学研究所)

溶接部の疲労寿命の延長(SM490)

レーザーピーニング処理による疲労寿命延長を確認

www.fhi.co.jp/news/06_04_06/06_06_02.pdf

航空宇宙産業への展開(Airbus殿)

(航空機で運べるシステム)

レーザーピーニング装置の目指す姿

まとめ

■日本独自のレーザーピーニング技術を開発し、効果 を確認: 残留応力、応力腐食割れ(SCC)、疲労
■ 遠隔施エシステムを開発し、1999年より国内原子 炉の応力腐食割れ(SCC)対策として適用
■ 原子力用蒸気タービンへの適用を開始(疲労対策)
■橋梁、航空宇宙などへの応用を検討(疲労対策)
レーザー発振器および施工装置の超小型化による 海外展開、適用範囲の拡大を計画

ご清聴ありがとうございました

www.photonfrontier.net

TOSHIBA Leading Innovation >>>

